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ABSTRACT

This study uses the method of self-organizing maps (SOMs) to categorize the June–August atmospheric

teleconnections in the 500-hPa geopotential height field of the Southern Hemisphere (SH) extratropics. This

approach yields 12 SOM patterns that provide a discretized representation of the continuum of SH tele-

connection patterns from 1979 to 2012. These 12 patterns are large in spatial scale, exhibiting a mix of annular

mode characteristics and wave trains of zonal wavenumber varying from 2 to 4. All patterns vary with intrinsic

time scales of about 5–10 days, but some patterns exhibit quasi-oscillatory behavior over a period of 20–

30 days, whereas still others exhibit statistically significant enhanced and suppressed frequencies up to about

four weeks in association with the Madden–Julian oscillation. Two patterns are significantly influenced by El

Niño–Southern Oscillation (ENSO) on interannual time scales. All 12 patterns have strong influences on

surface air temperature and sea ice concentrations, with the sea ice response occurring over a time scale of

about 2–4 weeks. The austral winter has featured a positive frequency trend in patterns that project onto the

negative phase of the southern annular mode (SAM) and a negative frequency trend in positive SAM-like

patterns. Such atmospheric circulation trends over 34 yr may arise through atmospheric internal variability

alone, and, unlike other seasons in the SH, it is not necessary to invoke external forcing as a dominant source

of circulation trends.

1. Introduction

TheSouthernHemisphere (SH) climate has undergone

substantial changes over recent decades.A poleward shift

of SH westerlies in austral summer (Thompson and

Solomon 2002; Marshall 2003; Hande et al. 2012; Young

et al. 2011), thought to be strongly related to ozone

depletion (Arblaster andMeehl 2006; Polvani et al. 2011;

Lee and Feldstein 2013), has manifested itself as an up-

ward trend in positive phase of the southern annular

mode (SAM) (Thompson and Wallace 2000; Thompson

and Solomon 2002). Both near-surface and midtropo-

spheric air temperature observations and reconstructions

show that the Antarctic Peninsula and West Antarctica

are among the fastest warming regions globally since the

mid-1900s (Steig et al. 2009; Screen and Simmonds 2012;

Bromwich et al. 2013). The west Antarctic seas have ex-

perienced opposing trends in both sea ice duration and

sea ice concentration (SIC), with an increase in the Ross

Sea region and decrease over the Bellingshausen Sea and

near the Antarctic Peninsula (Stammerjohn et al. 2008;

Holland and Kwok 2012; Li et al. 2014). Overall, Ant-

arctic sea ice extent has increased since 1979, in contrast

with projections from coupled global climate models

(Turner et al. 2013).
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In austral winter, similar spatial patterns are seen in both

midtropospheric and surface air temperature trends over

West Antarctica, likely indicative of the same mechanism

responsible for warming in this region (Screen and

Simmonds 2012). Analyses of the geopotential height field

further reveal an anomalous atmospheric circulation of

equivalent barotropic structure over the Bellingshausen–

Amundsen Seas and West Antarctica as the southernmost

cell of a wave train pattern emanating from the tropics. This

poleward arching Rossby wave train can be reproduced by

forcing atmospheric general circulationmodelswith tropical

sea surface temperature (SST) anomalies (Ding et al. 2011;

Li et al. 2014). It is hypothesized that the warm and cold

advections induced by the anomalous circulation give rise to

warming of the Antarctic Peninsula (Li et al. 2014) and

West Antarctica (Ding et al. 2011), as well as the opposing

trends in sea ice (Stammerjohn et al. 2008; Li et al. 2014).

The preceding studies illustrate that recently docu-

mented changes in Antarctic climate are strongly

related to variations in large-scale atmospheric tele-

connection patterns. In particular, these patterns tend to

be annular in character, as in the SAM, or generally

feature poleward arching wave trains, as in the so-called

Pacific–South American (PSA) patterns (e.g., Mo and

Ghil 1987; Mo and Higgins 1998). Although the intrinsic

time scale of these teleconnection patterns is short, on

the order of 10 days (Hartmann and Lo 1998; Feldstein

2000b; Gerber et al. 2008; Deser et al. 2010), from the

continuum perspective the changes in frequency of oc-

currence of such patterns can impart substantial in-

terannual and interdecadal climate variations (Franzke

and Feldstein 2005; Johnson et al. 2008; Johnson and

Feldstein 2010; Lee and Feldstein 2013). As suggested in

the discussion above, the frequency of these telecon-

nection patterns may be influenced by both changes in

radiative forcing and slowly varying tropical SST pat-

terns through mechanisms that include stratospheric–

tropospheric coupling and the convective excitation of

stationary Rossby waves (Hurrell and van Loon 1994;

Meehl et al. 1998; Thompson and Solomon 2002; Deser

et al. 2010; Ding et al. 2011; Li et al. 2014). However,

stochastic variability that is purely internal to the at-

mosphere in both the tropics (Ding et al. 2014) and ex-

tratropics also may impart significant low-frequency

variability on interdecadal time scales (Feldstein 2000a).

Although previous studies have described the win-

tertime variability of the SAM and PSA patterns, such

studies generally adopt a discrete modal perspective of

these teleconnection patterns. In reality, there likely

exists a continuum of SAM-like and PSA-like telecon-

nection patterns, with each member of the continuum

exhibiting variations in spatial structure, temporal evo-

lution, and means of excitation. In this study we use the

method of self-organizing maps (SOMs) (Kohonen

2001; Hewitson and Crane 2002; Johnson et al. 2008) to

characterize the austral winter [June–August (JJA)] SH

teleconnection patterns. The method of SOMs is a form

of cluster analysis that produces a set of representative

patterns on a topologically ordered two-dimensional

grid. SOMs have been used previously to characterize

Northern Hemisphere atmospheric teleconnection pat-

terns (Reusch et al. 2007; Johnson et al. 2008; Johnson

and Feldstein 2010) and to characterize SH patterns of

zonal wind variability (Lee and Feldstein 2013). This

study follows a similar approach as in Johnson et al.

(2008), Johnson and Feldstein (2010), and Lee and

Feldstein (2013) but for the SH 500-hPa geopotential

height field in austral winter. We focus on winter be-

cause this season is characterized by strong dynamic

variability, and its interdecadal variability has received

less attention than the austral summer when ozone de-

pletion is likely to impose stronger forcing on the at-

mospheric circulation. After determining a set of SOM

patterns that describe the continuum of wintertime SH

teleconnection patterns, we examine the time scale,

composite evolution, links with tropical variability, and

connections with temperature and sea ice for each SOM

pattern. We then revisit wintertime climate trends since

1979, as in Ding et al. (2011), but from the perspective of

changes in the frequency of occurrence of intraseasonal

varying teleconnection patterns, as captured by

the SOM.

We have organized the paper as follows. Section 2

describes the datasets and methods. In section 3, we

present the SOM and the analysis of the intraseasonal,

interannual, and interdecadal variability. We provide a

summary and conclusions in section 4.

2. Data and methodology

In this section, we first describe the data used in our

study, and then we provide a brief overview of the SOM

and composites methodology.

a. Data

We use 1979–2012 wintertime (JJA) daily 500-hPa

geopotential height anomaly data south of 208S from

the National Centers for Environmental Prediction

(NCEP)–National Center for Atmospheric Research

(NCAR) reanalysis (Kalnay et al. 1996) for the SOM

analysis to characterize the SH teleconnection patterns

into a finite number of clusters. In addition, we extract

300- and 700-hPa geopotential height and stream-

function at the 0.2582 vertical sigma level for composite

analyses. As described more thoroughly below, we also

perform empirical orthogonal function (EOF) analysis

9508 JOURNAL OF CL IMATE VOLUME 28

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/25/21 06:27 PM UTC



of daily mean zonal mean eddy kinetic energy (EKE),

derived from 6-hourly NCEP–NCAR reanalysis zonal

and meridional winds from 1000 to 200 hPa and from 208
to 708S. We calculate anomalies by removing the sea-

sonal cycle, which is defined as the first four harmonics

of the calendar day means for the 1981–2010 base pe-

riod. We weight both the geopotential height and EKE

data by the square root of cosine of latitude for the SOM

and EOF analyses to account for increasing gridpoint

density with latitude. For the EOF analysis of EKE, the

data are also weighted by the mass represented by each

vertical level.

After generating the SOM patterns, we calculate

composite anomaly maps of several variables that are

associated with the occurrence of each of the SOM

patterns. In particular we calculated composites of

NCEP–NCAR reanalysis near-surface air temperature

(SAT) and 500-hPa geopotential height [composites

derived from the European Center for Medium-Range

Weather Forecasts (ECMWF) interim reanalysis

(ERA-Interim; Dee et al. 2011) are nearly identical].

We also examine the SOM-related intraseasonal sea ice

variability with satellite-derived sea ice concentration

(SIC) data from the NASA Goddard Space and Flight

Center (GSFC) and the National Snow and Ice Data

Center (NSIDC) based on the NASA Team algorithm.

This dataset is generated from brightness temperature

derived from the Scanning Multichannel Microwave

Radiometer (SMMR) on the NASA Nimbus-7 satellite,

the Special Sensor Microwave Imager (SSM/I) on the

F8, F11, and F13 satellites of the U.S. Defense Meteo-

rological Satellite Program (DMSP), and the Special

Sensor Microwave Imager Sounder (SSMIS) on the

DMSP F17 satellite (Cavalieri et al. 1984; Cavalieri et al.

2012). The daily SIC data are interpolated onto a 18 3 18
spatial grid over polar latitudes. This sea ice data source

is not associated with known discontinuities that have

been identified in theNCEP ice analyses, in the National

Oceanic and Atmospheric Administration (NOAA)

Optimum Interpolation (OI) SST and the Hadley Cen-

tre Ice and Sea Surface Temperature (HadISST) prod-

ucts (Screen 2011), and in the NASAGSFC and NSIDC

data based on the bootstrap algorithm (Eisenman et al.

2014). For all datasets used in this study, we calculate

anomalies by removing the seasonal cycle in the same

way described above.

In the analysis of intraseasonal and interannual vari-

ability of the SOM patterns, we investigate the influence

of both the Madden–Julian oscillation (MJO) and

ENSO on the frequency of occurrence of each of the

SOM patterns. For the MJO analysis, we use the

Wheeler and Hendon (2004) MJO index, as provided by

the Australian Bureau of Meteorology (http://cawcr.

gov.au/staff/mwheeler/maproom/RMM/), which has

become a standard index for investigating relationships

with the MJO. This index is defined by the two leading

principal components (PCs) from an EOF analysis of

three combined tropical fields: outgoing longwave ra-

diation (OLR), 850-hPa equatorial zonal wind, and

200-hPa equatorial zonal wind fields. These two PCs,

designated as RMM1 and RMM2, define eight MJO

phases and an MJO amplitude, which together describe

the eastward propagation of the enhanced MJO con-

vection from the African continent (phase 1) to the cen-

tral equatorial Pacific Ocean (phases 7 and 8), generally

over the course of 30–70 days [see Wheeler and Hendon

(2004) for plots of the MJO-related OLR fields].

For the ENSO-related analysis, we subdivide all

months of the JJA season into one of three standard

categories: El Niño, neutral ENSO, or La Niña. We

define each category following the conventions of the

NOAA/Climate Prediction Center (CPC), which are

based on partitioning with the so-called Niño-3.4 SST

index. This index is defined by the SST anomaly aver-

aged over the region extending from 58S to 58Nand from

1208 to 1708W, where SST anomalies are derived from

the Extended Reconstructed Sea Surface Temperature

dataset, version 3b (ERSST; Xue et al. 2003; Smith et al.

2008). Then we classify an El Niño (La Niña) episode
when the 3-month running mean Niño 3.4 SST anomaly

is greater than 0.58C (less than 20.58C) for at least five
consecutive overlapping 3-month seasons. All other

periods are classified as neutral ENSO.

For the analysis of interdecadal variability, we ex-

amine the relationship between the SOM patterns and

tropical precipitation. We use pentad precipitation data

of the Global Precipitation Climatology Project (GPCP;

Adler et al. 2003), which is a precipitation dataset on a

2.58 latitude–longitude grid produced from satellite-

derived data and precipitation gauge analyses. We lin-

early interpolate the pentad data to daily resolution for

the composite analyses.

b. SOM analysis

The method of SOMs is a neural network–based

cluster analysis, similar to k-means clustering that

partitions a high-dimensional dataset into a smaller

number of representative clusters (Kohonen 2001). In

contrast with other types of cluster analysis, these SOM

clusters, each of which is associated with a component

called a node or neuron, become topologically ordered

on a lower-dimensional (typically two-dimensional)

lattice so that similar clusters are located close to-

gether in the lattice and dissimilar clusters are located

farther apart. This topological ordering occurs through

the use of a neighborhood function, which acts like a
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kernel density smoother among a neighborhood of

neurons within this low-dimensional lattice. Conse-

quently, neighboring neurons within this lattice influ-

ence each other to produce smoothly varying clusters

that describe the distribution of the data used to con-

struct the SOM.

In this study, we perform SOM analysis to categorize

daily JJA 500-hPa geopotential height anomalies in

the SH poleward of 208S. In the SOM analysis, the daily

geopotential height anomaly field is treated as an

M-dimensional vector, where M is the number of grid

points. The user specifies the number of clusters K and

the method for choosing K is discussed below. The final

clustering is determined through an iterative procedure

that approximately minimizes the Euclidean distance

between the daily geopotential height anomaly fields in

M-dimensional space and their best-matching SOM pat-

terns. During this iterative procedure, the SOM patterns

also ‘‘self-organize’’ into a topologically ordered two-

dimensional lattice or grid, as described above. Each daily

height field is assigned to a single best-matching SOM

pattern on the basis of minimum Euclidean distance.

Lagged composites associated with each geopotential

height SOM pattern are calculated on the basis of these

assignments of each day to a particular SOM pattern and

are discussed in further detail in section 3. Additional

details of the SOM methodology can be found in the

appendix of Johnson et al. (2008). See also Hewitson and

Crane (2002) and Liu et al. (2006) for additional discus-

sion of SOM applications in climate science and typical

SOM parameter choices. Reusch et al. (2005) and Liu

et al. (2006) compare SOM analysis with empirical or-

thogonal function analysis for the purpose of pattern

extraction, demonstrating several advantages of SOM

analysis over the more conventional approach.

Asmentioned above, the choice ofKmust be specified

prior to the iterative procedure that determines the SOM

clusters. Although there are quite a few approaches for

determining an appropriate value of K, there is no uni-

versally acceptedmethod for determining the optimalK.

Recently, Johnson (2013) proposed a method based on a

statistical distinguishability criterion to determine the

maximum number of cluster patterns to retain. Under

this criterion, the maximum number for K is the maxi-

mum value such that allK SOM patterns are statistically

distinguishable from each other. This test is administered

through the evaluation of whether or not all K(K2 1)/2

SOMpattern pairs are statistically distinguishable on the

basis of a field significance test, which in this case is based

on the determination of the ‘‘false discovery rate’’

(Benjamini and Hochberg 1995; Wilks 2006). Additional

details of the test are given in Johnson (2013). In the

present study, we add two additional steps to ensure

robustness of the results. First, we add a reproducibility

criterion: we train the SOMwith the first half of the data,

then assign the second half to the best matching patterns,

and finally evaluate whether the K(K 2 1)/2 SOM

composite pairs from the second half of the data are

statistically distinguishable. In this way, the SOM train-

ing remains separate from the distinguishability test.

The second addition, which also was recently applied in

Singh et al. (2014), accounts for the strong autocorrelation

evident in daily data. Because a SOM pattern typically

persists for several consecutive days, the number of daily

occurrences of each SOM pattern would substantially

overestimate the number of temporal degrees of freedom

in the local t tests that determine whether the SOM pat-

tern composite anomalies are significantly different from

each other. To correct for this potential source of bias, we

perform the local t tests for subsets of the daily geo-

potential height fields assigned to each SOM pattern.

Because the time scale of atmospheric teleconnection

patterns is on the order of one to two weeks (e.g.,

Feldstein 2000b), we set the condition that each geo-

potential height field assigned to the SOM pattern

within a subset must be separated from all other geo-

potential height fields within the subset by at least 15 days.

If this separation criterion is not met, then we only keep

the daily field with the highest pattern amplitude, where

the amplitude is defined as the projection of the daily

geopotential height field onto the assigned SOM pattern.

The value of K is varied from 2 to 50 at intervals

ranging from 2 to 10, and all K(K 2 1)/2 SOM pattern

pairs are evaluated for each choice of K. In addition,

because the final cluster solutions converge to a local

rather than global error minimum, we repeat the cal-

culations five times with different initial cluster seeds for

each choice of K. Figure 1 presents the results of the

distinguishability test in terms of the number of statis-

tically indistinguishable SOM pattern pairs as a function

ofK at the 1% significance level. This figure reveals that

all SOM pattern pairs remain statistically distinguish-

able until K reaches a value ;20, at which point some

pairs become indistinguishable. This finding suggests

that all SOM patterns remain sufficiently distinct for a

choice of K less than ;20. Here we choose K 5 12 be-

cause this value is large enough to resolve spatial vari-

ations among the continuum of SH teleconnection

patterns but small enough that patterns remain statisti-

cally distinct and interpretable. The primary results are

insensitive to the precise choice of K.

3. Results

In this section we present the results of the

SOM analysis, followed by an investigation of the
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intraseasonal, interannual, and interdecadal variations

in the SOM pattern frequencies of occurrence. We first

present the SOM patterns identified by our analysis that

represent the continuum of wintertime (JJA) SH tele-

connection patterns in the geopotential height field.

Figure 2 shows the 12 unique, statistically distinguish-

able SOM patterns arranged in a 3 3 4 lattice. The 12

patterns are characterized by large-scale wave train

patterns of zonal wavenumbers ranging from 2 to 4. In

addition, several patterns clearly project onto the SAM,

with plus SAM-like patterns in the bottom-left corner

(patterns 5, 6, 9, and 10), and minus SAM-like patterns

in the top-right corner (patterns 3, 4, and 8). PSA-like

wave train patterns can be seen throughout all SOM

patterns, particularly in the top-left and bottom-right

corners (patterns 1, 2, 6, 7, 11, and 12). The continuum

perspective of Fig. 2 demonstrates that the typical geo-

potential height patterns in the daily fields cannot be

characterized simply by the phase of SAM or the PSA;

rather, most SOM patterns represent a mix of these

canonical patterns in various phase relationships. The

relationship between this SOM analysis and the canon-

ical SH teleconnection patterns is quantified more

thoroughly in the following section. The frequencies of

occurrence of the 12 SOM patterns are fairly uniform,

demonstrating that each pattern occurs with similar

frequency (Fig. 2).

Large-scale teleconnection patterns like the SAM

and PSA typically are characterized by a deep, equiv-

alent barotropic structure in the extratropics. These 12

SOM patterns generally have a nearly equivalent bar-

otropic structure as well, as evidenced by similar pat-

terns in the composite 300- and 700-hPa anomalies

(Figs. S1 and S2, respectively in supplemental

material).

Each of the SOM patterns undergoes substantial vari-

ability in frequency across a broad range of time scales.

Figure 3 illustrates this point in the form of the time series

of 7-yr runningmean anomalous frequency of occurrence

for each SOM pattern. We derive this time series by

calculating the frequency of occurrence of each pattern

for each year, subtracting the climatological frequency

of occurrence from each annual value, and then

smoothing the time series with a 7-yr running mean. We

see evidence of strong interannual and decadal vari-

ability in the frequencies of occurrence, and a few pat-

terns show a pronounced frequency trend over the past

34 yr. For example, pattern 1 has a tendency for positive

anomalous frequency of occurrence in the first half of the

record, but negative in the second half. Pattern 4, in con-

trast, shows the opposite tendency with the highest fre-

quency of occurrence inmost recent decade. The following

sections describe the intraseasonal, interannual, and in-

terdecadal frequencies of occurrence more thoroughly.

a. Relationship with EOF analysis and the canonical
SH teleconnection patterns

As mentioned above, the SOM analysis suggests that

the canonical SH teleconnection patterns comprise a

mix of annular and wave train–type patterns that occur

with similar frequency. These canonical teleconnection

patterns typically are identified through EOF analysis of

sea level pressure, geopotential height, or upper tropo-

spheric streamfunction, with the first three EOFs de-

fining the SAM (e.g., Thompson and Wallace 2000)

and a pair of PSA patterns (e.g., Mo 2000). The two PSA

modes depict wavenumber-3 patterns in quadrature

with each other and a well-defined wave train from the

tropical Pacific toArgentina with large amplitudes in the

Pacific–South America sector (Mo and Paegle 2001).

We examine the relationship between the 12 SOM

patterns and the canonical SH teleconnection patterns

by first performing an EOF analysis of the daily JJA

500-hPa geopotential height anomalies and defining the

SAM, PSA1, and PSA2 patterns as the first, third, and

second EOFs. The first three EOFs explain 10.4%,

7.9%, and 7.1% of the total variance, respectively, and

the third is well separated from the fourth by the North

et al. (1982) criterion. We notice that the EOF order of

the PSA patterns of daily data is the reverse of the

previous studies that use low-frequency (e.g.,.10 days)

data (Ghil andMo 1991; Lau et al. 1994; Mo andHiggins

1998). This is due to the degenerate nature of the PSA

modes (Mo and Higgins 1998; Mo 2000; Robertson and

Mechoso 2003). The SAM, PSA1, and PSA2 patterns

defined here (Fig. 4) agree well with the patterns

FIG. 1. The number of statistically indistinguishable SOM pat-

tern pairs (y axis, 0–200 in increments of 20) as a function of the

number of SOMpatterns (x axis, 0–50 in increments of 5). The bold

line is the mean of the five solutions obtained with different ran-

dom cluster seed initializations, and the dashed lines represent the

maximum and minimum from the five solutions. The tests are

conducted at the 1% significance level.
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identified in previous studies. One difference is that the

SAM defined by the daily data (Fig. 4a) exhibits less

zonal symmetry than the SAM typically identified with

monthly or seasonal data; however, the daily SAM index

(defined below) correlates strongly (r 5 0.90) with that

of the NOAA/CPC (also called the Antarctic Oscilla-

tion index and available on their website), which is de-

fined by the projection of daily fields onto the leading

EOF of monthly mean 700-hPa height poleward of 208S.
The strong correlation confirms that our definition of the

SAM is reasonable.

We next define the daily SAM, PSA1, and PSA2 in-

dices as the standardized PCs of the corresponding

EOFs. To determine the relationship between the 12

SOM patterns and these canonical teleconnection pat-

terns, we calculate the composite indices of SAM, PSA1,

and PSA2 for each of the 12 SOM patterns by averaging

the index values for the days that are assigned to each

SOMpattern (section 2b). For the statistical significance

calculation of the composite indices, we add the condi-

tion that each canonical teleconnection index value

must be separated from all others by at least 15 days to

ensure temporal independence. If two occurrences of a

particular SOM pattern are separated by less than

15 days, then we discard the teleconnection index values

for the day with the lower SOM pattern amplitude,

FIG. 3. Seven-year runningmean anomalous frequency (color,%)

for each of the 12 SOM patterns of Fig. 2. The patterns on the y axis

run from 1 on top to 12 on the bottom; the years on the x axis run

from 1995 to 2005; and the color scale runs from 16 (dark red) on

top to 26 on the bottom (dark blue).

FIG. 2. The 12 SOMpatterns of JJA 500-hPa height anomalies arranged in a 33 4 array. The colored contours start

at640mwith an interval of 20m, and the percentages in the center of eachmap indicate the frequency of occurrence

of the SOM pattern over the 1979–2012 period.
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where the pattern amplitude is defined as the projection

of the daily 500-hPa height anomaly field onto the SOM

pattern. Note that we only discard some index values for

the statistical significance calculations but not for the

actual reported composite indices. These composite in-

dices of the three teleconnection patterns for all 12 SOM

patterns are illustrated in Fig. 4.

The results in Fig. 4a confirm that patterns in the left

(right) half of the SOM generally are associated with the

positive (negative) phase of the SAM. In particular, four

patterns in the bottom left (patterns 5, 6, 9, and 10) are

most strongly associated with the positive SAM, and

three patterns in the top right (patterns 3, 4, and 8) are

most strongly associated with the negative SAM.

Figure 4b demonstrates that the middle of the SOM

(patterns 3, 6, 7, and 11) projects most strongly onto the

positive phase of the PSA1, whereas both the top left

(patterns 1, 2, and 5) and bottom right (pattern 12)

FIG. 4. (left) Canonical SH teleconnection patterns and (right) the composite teleconnection pattern numerical

indices (also with color, scale on right) for each of the 12 SOM patterns. The teleconnection patterns shown are the

positive phase of the (a) SAM (EOF1), (b) PSA1 (EOF3), and (c) PSA2 (EOF2), and each map represents a re-

gression of 500-hPa geopotential height on the corresponding PC, contoured (color scale on bottom) at intervals of

20m with the zero contour omitted. The SOM grid on the right side indicates the 12 SOM patterns with the same

orientation as in Fig. 2. Black and white composite index numerals are statistically significant at the 5% level, and

gray numerals are not statistically significant.
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project onto the negative phase. PSA2 is partitioned

most strongly along the bottom left to top right diagonal

(Fig. 4c), with patterns in the bottom right (patterns 8,

11, and 12) associated with the positive phase and pat-

terns in the top left (patterns 1 and 6) most strongly

related with the negative phase.

The preceding analysis suggests that each of the three

canonical SH teleconnection patterns, as determined

through EOF analysis, can be described as amix of three

to five SOM patterns that occur with similar frequency.

To support this assertion quantitatively, we compare

each of the three EOF patterns with its corresponding

mixed SOM patterns, where the mixed SOM patterns

are defined as a frequency-weighted sum of a subset of

SOM patterns. The subset consists of all SOM patterns

whose composite teleconnection index (i.e., the values

shown in Fig. 4) is greater (less) than 0.5 (20.5) for the

positive (negative) phase of the corresponding EOFs.

Specifically, we calculate

z
T
(x, y)5 c�

N

i51

f
i
z
i
(x, y) , (1)

where zT is the mixed SOM patterns of 500-hPa height

for teleconnection pattern T (SAM, PSA1, or PSA2) of

either positive or negative phase, zi is SOM pattern i

within the subset defined above, fi is the frequency of

occurrence of SOM pattern i, and N is the total number

of SOM patterns within the subset, ranging from 3 to 5.

The factor c is defined as

c5

 
PC

T �
N

i51

f
i

!21

, (2)

where PCT is the mean PC index amplitude for tele-

connection pattern T within the subset. This factor is a

normalization to facilitate direct comparison between

the EOF regression patterns and the corresponding

mixed SOM patterns, determined by Eq. (1). Both are

interpreted as anomalies with respect to an index am-

plitude of one standard deviation.

As seen in Fig. 5, the PC regressions and their corre-

sponding mixed SOM patterns, zT , display striking

similarities. The strong correspondence between the PC

regressions, representing the canonical teleconnection

patterns (left), and zi, the mixed SOM patterns (center

and right), indicates that both the positive and negative

phases of the SAM, PSA1, and PSA2 can be captured

by a linear combination of three to five SOM patterns.

The SOM patterns, however, have the advantage of

bearing a stronger resemblance to the daily 500-hPa

geopotential height anomaly patterns that comprise the

subset. To illustrate this point, we calculate the mean

centered pattern correlation (e.g., Santer et al. 1993)

between the daily 500-hPa height anomaly fields with a

standardized PC amplitude exceeding 0.5 and the cor-

responding EOF pattern. The mean absolute pattern

correlations for the SAM (EOF1), PSA1 (EOF3), and

PSA2 (EOF2) are 0.36, 0.30, and 0.31, respectively. We

also performed similar pattern correlation calculations

for the daily 500-hPa height anomaly fields that com-

prise the 12 SOM clusters. The mean pattern correlation

for the 12 SOMpatterns is 0.46, with values ranging from

0.42 to 0.50. This calculation demonstrates a greater

correspondence between the daily anomaly fields and

each of the SOM patterns than that between the daily

fields and any of the first three EOFs.

b. Intraseasonal variability

On the basis of previous teleconnection pattern

studies (e.g., Feldstein 2000b), we expect that each of the

12 SOM patterns of Fig. 2 would have an intrinsic time

scale on the order of one to two weeks. To investigate

this hypothesis thoroughly and to document the typical

evolution of each pattern and its influence on tempera-

ture and sea ice, we calculate lagged composites based

on an amplitude time series assigned to each SOM

pattern. The amplitude time series is calculated by

projecting all daily JJA 500-hPa height (Z500) anomaly

patterns onto the patterns shown in Fig. 2, and then

standardizing the resulting time series. We then calcu-

late lagged composites of the amplitude time series as

well as spatial fields of Z500, SAT, and sea ice concen-

tration anomalies for each SOM pattern. The zero lag is

defined by the occurrence of the particular SOM pat-

tern, and if the pattern occurs for several consecutive

days, then the day with the largest amplitude within the

sequence is assigned a lag of zero. To generate reason-

able confidence that episodes are independent for the

composite, we add the condition that all identified epi-

sodes for a particular SOMpatternmust be separated by

at least 15 days using the method described in the pre-

vious section. Statistical significance of the composite

amplitude time series is calculated on the basis of a two-

sided t test at the 5% significance level.

Here we present the lagged composite maps for

three patterns that represent typical life cycle behav-

ior. The lagged composites for the rest of the patterns

can be found in the supplementary material (Figs. S3–

S11). Figures 6–8 show the evolution of anomalous

Z500, SAT, and SIC for patterns 1, 6, and 8 from

lag 26 days to lag 16 days with an interval of 3 days.

We focus on SAT and SIC in connection with these

SOM patterns owing to the close relationships among

these variables. To isolate the intraseasonal SIC var-

iability from lower-frequency SIC variability, we show

9514 JOURNAL OF CL IMATE VOLUME 28

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/25/21 06:27 PM UTC



composites of DSIC, which is defined as change of the

sea ice concentration anomaly composite with respect

to the composite value at the time of each pattern

onset, defined below.

Inspection of Figs. 6a, 7a, and 8a confirms that the

SOM patterns grow and decay over a period of about

one week. Here we define the time scale of each SOM

pattern as the time between onset and decay, where

onset is defined as the time when the pattern amplitude

first reaches 1/e times the peak amplitude, and decay is

the time when the amplitude falls to 1/e times the peak

amplitude. Table 1 shows that the time scale of the SOM

patterns ranges from 4.9 to 8.5 days.

All three composite life cycles in Figs. 6–8 indicate

that a wave train pattern is initiated at about a lag

of26 days (Figs. 6b, 7b, and 8b). Thewave train patterns

intensify until lag 0 and propagate slowly eastward until

lag 3. Following the evolution of the wave train, SAT

anomalies of alternating signs develop in approximate

spatial quadrature with the atmospheric highs and

lows (Figs. 4–6), consistent with the expected pattern of

cold and warm advection associated with the atmo-

spheric circulation. DSIC becomes prominent around

lag 23 days, with 1DSIC coincident with the cold SAT

anomaly and northward wind forcing, and vice versa

(Figs. 6c, 7c, and 8c). The amplitude of DSIC reaches

maximum between lag 0 and lag 13 (Figs. 6d, 7d,

and 8d).

The lagged composites in Figs. 6–8 indicate that the

SIC anomalies undergo substantial growth and decay on

intraseasonal time scales in response to the forcing of

large-scale atmospheric teleconnection patterns. The

role of atmospheric circulation revealed in the com-

posite maps is consistent with the wind-driven dynamic

and thermodynamic arguments of several studies

(Stammerjohn et al. 2008; Ding et al. 2011; Bromwich

FIG. 5. Canonical SH teleconnection patterns determined (left) through EOF analysis and

(center),(right) as a linear combination of SOM patterns determined with Eq. (1). Shown are

the PC regressions (colors, m) for the (a) SAM (EOF1), (d) PSA1 (EOF3), and (g) PSA2

(EOF2), with the same plotting conventions as in Fig. 4, together with the (b),(e),(h) positive

phase and (c),(f),(i) negative phase SOM-based reconstructions of the SAM, PSA1, and PSA2,

respectively.
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et al. 2013; Holland and Kwok 2012; Li et al. 2014). In

the same way that we define an amplitude time series for

the SOM 500-hPa height pattern, we define a SOM-

related SIC amplitude time series by projecting the daily

SIC anomaly fields onto the lag-0 composite SIC

anomaly map for each SOMpattern. The composite SIC

amplitude time series is shown in blue in Figs. 6a, 7a, and

8a. These time series indicate that the SIC response also

grows and decays on short, intraseasonal time scales but

over a longer time scale than that of themidtropospheric

circulation. Table 1 shows that the SIC pattern time

scales, defined in the same way as for the 500-hPa height

FIG. 6. (a) Lagged composites of the SOM 500-hPa height (black) and SIC (blue) amplitude

time series, as defined in the text, for SOM pattern 1 and lags between240 and140 days. The

symbols on the curves represent statistically significant amplitudes at the 5% level on the basis

of a two-sided t test. (b)–(f) Composites of 500-hPa height anomalies (black contours at an

interval of 40m), SAT anomalies (color shading, 8C), and DSIC (red and blue contours at an

interval of 3%) for lags of (b)26, (c)23, (d) 0, (e)13, and (f)16 days. Dashed contour lines

indicate negative values, and blue (red) contours indicate positive (negative) DSIC. Note that

the thick blue (red) contours denote DSIC 5 6% (26%).
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time scales, are about 2–4 times longer than the 500-

hPa height time scales. The longer time scale of SIC

pattern growth and decay likely relates to the slower

processes regulating anomalous radiative and surface

heat fluxes that act in tandem with the faster mechanical

forcing associated with the growth and decay of the

Z500 pattern. For example, in a study of theMJO impact

on Arctic SAT, Yoo et al. (2012b) demonstrate that the

FIG. 7. (a)–(f) As in Fig. 6, but for SOM pattern 6. (g) As in (a)–(f) but for a lag of130 days

with 500-hPa height anomalies in black contours at an interval of 20m andDSIC in red and blue

contours at an interval of 2%. The thick blue (red) contours denote DSIC 5 4% (24%).
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poleward flux of moisture and resulting increase in

downward infrared radiative flux act to prolong MJO-

related Arctic SAT change after the large-scale atmo-

spheric circulation anomaly pattern decays. These

results agree with earlier findings of Lee et al. (2011). A

more detailed understanding of the mechanisms regu-

lating the time scale of SIC anomaly pattern evolution

requires further study.

Although Figs. 6–8 share many common features,

there are some notable differences among SOM pat-

terns as well. In particular, pattern 6 exhibits some sur-

prising evidence of oscillatory behavior over a time scale

of ;(20–30) days (Fig. 7a). The composite amplitude

time series exhibits statistically significant peaks at a lag

of ;220 and ;130 days. Figure 7g illustrates the

lag 130-day composites, which resemble the atmo-

spheric wave train evident at lag 0 but of weaker am-

plitude. As described below, we examine the possible

role of the MJO in modulating the frequencies of oc-

currence of the SOM patterns, but pattern 6 does not

exhibit a strong relationship with the MJO (not shown).

Recently, however, Thompson and Woodworth (2014)

and Thompson and Barnes (2014) provided strong evi-

dence that the Southern Hemisphere atmospheric

FIG. 8. As in Fig. 6, but for SOM pattern 8.
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circulation exhibits periodic behavior with a time scale

of 20–30 days in association with the so-called baroclinic

annular mode (BAM). This distinct periodicity, which is

evident in both observations and a hierarchy of models

(Thompson and Barnes 2014), is believed to result from

feedbacks between eddy heat fluxes and baroclinicity

and manifests as pulses of extratropical eddy kinetic

energy.

The lagged composites of Fig. 7 suggest that the oc-

currence of SOM pattern 6 is associated with a pulse of

baroclinic eddy growth. Therefore, we speculate that the

periodicity evident in Fig. 7a may be a signature of the

BAM. Similar periodicity, though weaker but still sig-

nificant, is also evident in SOM pattern 2 (Fig. S3). To

explore the possible link with the BAM, we first calcu-

late theBAM index in the sameway as in Thompson and

Woodworth (2014) except that we restrict focus to JJA

instead of the whole year. Specifically, we define the

BAM index as the leading, standardized PC of daily

zonal-mean EKE, [u*2 1 y*2]/2, from 1000 to 200 hPa,

where the square brackets indicate the zonal mean and

asterisks denote departures from the zonal mean.

Figure 9a shows the regression of zonal-mean EKE on

the BAM index, which agrees well with the pattern in

Thompson and Woodworth (2014; their Fig. 2f) except

for the equatorward shift of the upper tropospheric

maximum; this difference likely relates to the stronger

subtropical jet in JJA relative to the annual mean. We

next calculate lagged composites of the BAM index

using the same approach as for the composite projection

indices in Figs. 6a, 7a, and 8a. In Fig. 9b, we illustrate the

lagged composite BAM index for patterns 6 and 12, as

pattern 12 resembles the opposite phase of pattern 6 (see

Fig. 2). Consistent with our speculation, we see positive

composite BAM index values at lag 0, indicating en-

hanced zonal-mean EKE, and quasi-oscillatory be-

havior with statistically significant peaks at lags of

20–30 days. We note that the secondary peak in the

composite projection index for pattern 6 (;130 days;

Fig. 7a) is later than the peak in the BAM index

(;125 days; Fig. 9b). This offset may reflect the limi-

tation of using a single PC to capture the dynamical

processes of the BAM, but the quasi-oscillatory behav-

ior in both time series is intriguing.

We also note that pattern 12 does not show a similar

peak in the projection index for lags of 20–30 days

(Fig. S11a) despite the peak in the BAM index. In-

spection of the lag 125-day composite 500-hPa height

anomalies for pattern 12 (not shown) reveals an in-

vigorated wave train in the southern Indian Ocean and

western Pacific, similar in pattern but opposite in phase

to the lag 130-day composite for pattern 6 (Fig. 7g) but

amplitudes are weak over the main South Pacific and

South Atlantic action centers. This example highlights

that quasi-oscillatory spatial variability of the SH cir-

culation in association with the BAM may be more

complicated than recurrence of a single pattern. More-

over, these patterns associated with the BAM revealed

here do not resemble annular modes; instead they fea-

ture zonally extended wave trains. Therefore, the an-

nularity evident in the composite zonal wind field

associated with the BAM (Thompson and Woodworth

2014; see their Fig. 10b) likely is a weak residual pattern

not closely resembling the individual BAM episodes.

These observations suggest that the quasi-oscillatory

variability of the SH circulation in association with the

BAM requires further study for us to understand the

spatial patterns in association with pulses of zonal EKE

anomalies.

Another potential source of predictability at similar

lead times is the MJO, which is the dominant mode of

tropical variability on intraseasonal time scales that is

characterized by large-scale convection anomalies that

circumnavigate the tropical belt in approximately 30–

70 days (Madden and Julian 1971, 1972; Zhang 2005).

The MJO extratropical influence occurs primarily

through the tropical excitation of poleward-propagating

Rossby waves (e.g., Hoskins and Karoly 1981), and the

MJO has well-known impacts on large-scale wintertime

teleconnections in the Northern Hemisphere (e.g.,

Ferranti et al. 1990; Cassou 2008; Mori and Watanabe

2008; L’Heureux and Higgins 2008; Lin et al. 2009;

Johnson and Feldstein 2010; Riddle et al. 2013) as well as

in the Southern Hemisphere (Revell et al. 2001;

Matthews and Meredith 2004; Yoo et al. 2012a).

In this study, we examine the MJO influence on the

SOMpattern frequency of occurrence in a similar way as

in Cassou (2008) and Riddle et al. (2013) for Northern

Hemisphere teleconnection patterns identified through

cluster analysis. We first identify all active MJO periods

TABLE 1. Time scale of each of the SOMpatterns and the associated

sea ice composite patterns, as defined in the text.

SOM pattern No.

SOM pattern time

scale (days)

SIC time

scale (days)

1 6.3 11.0

2 4.9 8.8

3 5.9 16.8

4 6.1 13.5

5 7.1 19.6

6 5.3 15.7

7 5.8 21.7

8 4.8 7.5

9 8.5 35.7

10 7.6 15.7

11 5.1 14.1

12 7.3 12.3
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corresponding with each of the eight Wheeler and

Hendon (2004) MJO phases, where an active MJO is

defined by an amplitude exceeding 1.0. We recognize

that this amplitude criterion does not necessarily isolate

all ‘‘true’’ MJO episodes with eastward propagating

convection at the characteristic MJO time scale, but the

more inclusive definition used here likely would be

beneficial from a forecasting perspective (e.g., Johnson

et al. 2014). Then we calculate the anomalous frequency

of occurrence of each SOMpattern for lags ranging from

two days before (lag 22 days) to 42 days after the MJO

phase occurrence (lag 142 days). We next smooth the

anomalous frequency time series with a 5-day running

mean. Here we express anomalous frequencies as an

anomalous percentage relative to climatology, as in

Cassou (2008) and Riddle et al. (2013), so that a value

of 2100% means no pattern occurrence and a value

of 1100% means twice as frequent occurrence as in

climatology.

We evaluate the statistical significance of the anom-

alous frequencies through a Monte Carlo simulation

approach. For each simulation, we randomly shuffle the

years of both the SOM pattern occurrence and MJO

time series and then calculate the anomalous frequen-

cies of occurrence in the same way as with the true SOM

pattern occurrence and MJO time series. We repeat

FIG. 9. (a) Regression of JJA zonal mean eddy kinetic energy (m2 s22) on the BAM index,

which is defined as the leading standardized PC of JJA SH eddy kinetic energy. (b) Lagged

composite amplitude of the BAM index for SOM patterns 6 (red) and 12 (blue) for lags be-

tween 240 and 140 days. The symbols on the plots indicate statistically significant composite

amplitudes at the 5% level based on a two-sided t test.

9520 JOURNAL OF CL IMATE VOLUME 28

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/25/21 06:27 PM UTC



these simulations 10 000 times and calculate the 2.5th

and 97.5th percentiles of the synthetic anomalous fre-

quencies for each lag, MJO phase, and SOM pattern.

The SOM pattern anomalous frequencies are consid-

ered statistically significant at the 5% level if they are

below the 2.5th or above the 97.5th percentiles of the

distribution of simulated frequencies.

After performing these calculations, we identify three

SOMpatterns for which theMJO has a notable influence:

patterns 1, 7, and 11. Figure 10 presents the anomalous

frequencies of these three patterns as a function of MJO

phase and lag. This figure suggests that pattern 1 is

strongly excited about 15–20 days after the MJO is in

phase 2 (Fig. 10, left column), when positive anomalous

FIG. 10. Anomalous frequencies of occurrence (y axes, %) of SOM patterns (left) 1, (center)

7, and (right) 11 as a function of (top)–(bottom) MJO phase and lag (x axes, days). Red (blue)

filled bars represent anomalous positive (negative) anomalous frequencies at the 5%

significance level.
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convection occurs over the tropical Indian Ocean and

suppressed convection occurs over the western equatorial

Pacific (Wheeler and Hendon 2004; see also the NOAA/

CPC tropicalMJO composites page at theirwebsite www.

cpc.ncep.noaa.gov). In contrast, pattern 1 occurrence

tends to be suppressed about 10–25 days after the MJO is

in phase 4, when the anomalously strong convection

progresses to the western equatorial Pacific region.

Pattern 7 similarly experiences suppressed occurrence

in association MJO phases 3 and 4 (Fig. 10, center

panels), but the strongest excitement appears to occur

about 25–35 days after theMJO is in phase 6, when there

is an east–west dipole with suppressed convection in the

tropical Indian Ocean and enhanced convection

throughout the equatorial Pacific region. Pattern 1

projects onto the positive phase of the SAM, whereas

pattern 7 projects onto the negative phase. The results

presented here suggest that an east–west dipole of

tropical convection with enhanced convection in the

Indian Ocean and suppressed convection over the

western equatorial Pacific excites a positive SAM-like

pattern, whereas the opposite phase of the convection

dipole excites a negative SAM-like pattern. This general

relationship is consistent with previous studies (Matthews

and Meredith 2004; Flatau and Kim 2013; Zhang 2013),

and a similar relationship exists in the Northern Hemi-

sphere with the northern annular mode (L’Heureux and

Higgins 2008; Riddle et al. 2013).

The MJO influence on pattern 11 reveals some of the

strongest anomalous frequencies, extending to surpris-

ingly long lags (Fig. 10, right column). Positive anoma-

lous frequencies occur about 35–40 days after MJO

phase 1, although statistically significant anomalous

frequencies at such long lags may be a random occur-

rence, as significant anomalous frequencies at these lags

for all other MJO phases and SOM patterns are un-

common (not shown). These positive anomalous fre-

quencies shift to smaller lags with increasingMJOphase,

although not always remaining statistically significant.

Nevertheless, this progression of anomalous frequencies

is consistent with the eastward progression of the MJO

convection with a time scale of ;(40–50) days.

Overall the analysis of intraseasonal variability sug-

gests that the 12 SOMpatterns vary with a short intrinsic

time scale on the order of one week, but there are po-

tential sources of predictability that extend to lead times

of several weeks. These sources may be related to

extratropical atmospheric dynamics, as in the BAM, and

excitation through tropical convection, as with theMJO.

c. Interannual variability

Figure 3 indicates that the 12 SOM patterns undergo

substantial interannual variability in the pattern

frequency of occurrence. Moreover, the preceding sec-

tion suggests that the tropics may play an important role

in modulating these frequencies of occurrence. Here we

examine whether the tropical convection anomalies as-

sociated with ENSO also may have a significant influ-

ence on SOM pattern frequency of occurrence. As

discussed in section 2, we use a single index (Niño-3.4
SST) to partition the data into three standard ENSO

categories, but it is likely that such a simple partitioning

does not capture the full impact of ENSO variability,

including different ENSO ‘‘flavors’’ (e.g., Johnson

2013), on the SOM patterns. Therefore, this analysis

should be viewed as a first step to assess the influence of

the three canonical ENSO categories. We also note that

JJA is typically characterized by either the developing

or decaying stage of ENSO, which indicates that ENSO-

related SST anomalies are typically weaker than in

austral summer.

Figure 11 presents the frequencies of occurrence of

the 12 SOM patterns sorted by the three ENSO cate-

gories. Statistical significance of anomalous frequencies

is assessed with a similar type of Monte Carlo resam-

pling test as for the MJO-related anomalous frequen-

cies. In this case we randomly reassign the dates of the El

Niño and La Niña episodes in each simulation but

maintain the average duration of each episode. We

calculate the frequencies of occurrence for each SOM

pattern and for each El Niño, neutral ENSO, and La

Niña category in 10 000 simulations with the randomly

reassigned ENSO categories. The ENSO-related fre-

quencies are considered statistically significant at the

5% level if both of the observed SOM pattern fre-

quencies during El Niño and La Niña exceed the 95%

FIG. 11. Frequency of occurrence (%) of the 12 SOM patterns (x

axis) during La Niña (blue), neutral ENSO (green), and El Niño
(red) episodes. Filled bars indicate that the La Niña and El Niño
frequencies are significantly different from the climatological fre-

quency at the 5% level on the basis of a Monte Carlo resampling

test described in the text.
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confidence interval from the synthetic frequency

calculations.

Figure 11 reveals that two patterns are significantly

impacted by the occurrence of ENSO: patterns 5 and 12.

Pattern 5, which projects onto the positive phase of the

SAM but with strongest negative height anomalies cen-

tered over the Ross Sea covering the entire West Ant-

arctica and extending to the George V coast (;1508E)
(Figs. 2 and S6), is preferentially excited during La Niña
and suppressed during ElNiño. This general relationship
between La Niña and the positive phase of the SAM is

consistent with previous studies (L’Heureux and

Thompson 2006; Fogt et al. 2011; Gong et al. 2013; Ding

et al. 2012; Ding et al. 2015), although the tropical SST

anomalies that force the SAM in JJA apparently are

most significant in the central rather than eastern equa-

torial Pacific (Ding et al. 2012). Pattern 12, in contrast, is

preferentially excited byElNiño. Interestingly, pattern 12
does not resemble the opposite phase of pattern 5, al-

though it does feature positive height anomalies off the

West Antarctic coast (Figs. 2 and S11). Pattern 12 can be

characterized as a tripole pattern with positive height

anomalies near the Amundsen Sea and the prime me-

ridian and a negative height center over the Antarctic

Peninsula. This SOM pattern resembles the composite

Z500 anomaly pattern for El Niño episodes identified by

Karoly (1989), which supports the consistency with

previous work. The enhanced high-latitude Pacific

ridging (troughing) during El Niño (La Niña) also is

consistent with the enhanced (suppressed) occurrence of

atmospheric blocking during El Niño (La Niña)
(Oliveira et al. 2014). Note that the patterns most

strongly excited by ENSO are distinct from the patterns

most strongly connected with the MJO.

d. Interdecadal variability

As indicated by Fig. 3, some SOM patterns have

undergone a substantial trend in frequency of occurrence

over the 34-yr period under investigation.We provide the

linear frequency of occurrence trend of all 12 SOM pat-

terns in Fig. 12, which reveals that the patterns on the

left side of the SOM have undergone negative fre-

quency trends, whereas the patterns on the right have

undergone a positive trend.Referring back toFigs. 2 and 4,

we find that these results indicate positive frequency trends

for negative SAM-like patterns, but negative frequency

trends for positive SAM-like patterns. This trend toward

the negative phase of the SAM in JJA, which starkly

contrasts the trend in austral summer, has been noted

previously (Ding et al. 2012). The figure further reveals

that two particular patterns have experienced the strongest

trends, a negative frequency trend for pattern 1 and a

positive frequency trend for pattern 11.

Because the trends in tropical SSTs have been impli-

cated as important sources for extratropical SH trends

(Ding et al. 2011, 2012; Ding and Steig 2013; Li et al.

2014; Ding et al. 2015), we examine the possible role of

tropical convection in the positive frequency trend of

SOM pattern 11. Figure 10 confirms a tropical connec-

tion with pattern 11, as the MJO is shown to strongly

excite this pattern. We examine this connection more

closely in Fig. 13, which presents lagged composites for

pattern 11 calculated in the same way as in Figs. 6–8 but

with tropical rainfall and upper tropospheric (sigma

level 0.2582) streamfunction for lags between 212 days

and 16 days. This figure reveals that the excitation of

pattern 11 tends to be preceded by enhanced tropical

convection in the equatorial western Pacific near and

southeast of the Philippines about 6–12 days before the

occurrence of pattern 11. Given that pattern 11 is

strongly associated with the PSA2 (Fig. 4c), these results

are consistent with Mo and Higgins (1998). Between

lag 212 and 26 days, a wave train emanating from

southern Africa intensifies while an east–west stream-

function dipole develops over and east of Australia that

is reminiscent of the equatorial Rossby–Kelvin wave

response typical of MJO episodes (e.g., Matthews et al.

2004). The wave train of wavenumber 4 intensifies fur-

ther after lag 26 days and peaks at lag 0 (Fig. 13e).

Next we examine whether or not there has been a

trend in the tropical precipitation patterns associated

with the excitation of pattern 11. For this analysis we

projected daily JJA precipitation fields from 308S to

308N onto the lag 26-, 29-, and 212-day precipitation

composites of Fig. 13 and then determined whether or

not a trend is evident. The trends of these projection

time series are weak and far from statistical significance,

FIG. 12. SOM pattern frequency trends [% (30 yr)21] (z axis and

color scale) over 1979–2012 for the 12 SOMpatterns oriented in the

same way as in Fig. 2 (x and y axes).
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indicating that there has not been a discernible increase

in frequency of precipitation patterns known to excite

SOM pattern 11. Figure 14 provides the 1979–2012 JJA

trends of GPCP precipitation and 500-hPa geopotential

height, further supporting that the trend in tropical

precipitation does not match closely with the lagged

composites of Fig. 13. Specifically, the centered pattern

correlations between the tropical precipitation trend

pattern from 308S to 308N (Fig. 14a) and the pattern 11

precipitation composites (Figs. 13a–c) are 20.06 for a

lag of212 days,20.04 for a lag of29 days, and 0.00 for a

lag of26 days, which confirm the conclusion drawn from

visual inspection.

Another possibility is that the trends in SOM pattern

frequency relate to ‘‘climate noise’’ internal to the

atmosphere—that is, arising from stochastic variability

of atmospheric processes with short, intraseasonal time

scales (Feldstein 2000a). Here we distinguish atmo-

spheric internal variability from other forms of in-

ternal variability that incorporate coupling with the

FIG. 13. Lagged composites of precipitation (color shading at an

interval of 0.3mmday21) and streamfunction (contours at an in-

terval of 2 3 106m2 s21) for SOM pattern 11 at lags of (a) 212,

(b) 29, (c), 26, (d), 23, (e), 0, (f) 13, and (g) 16 days.
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hydrosphere and cryosphere, which would entail natural

fluctuations of longer time scales. To explore the possi-

ble role of atmospheric internal variability, we examine

the statistical significance of the 12 SOM frequency

trends with respect to aK-state first-order Markov chain

null hypothesis, similar to what was applied in Johnson

(2013). For this test we generate 10 000 synthetic first-

order Markov chain SOM pattern time series with the

same transition probabilities as observed and then cal-

culate the frequency trends from each of these synthetic

time series. The observed SOM frequency trends are

considered statistically significant at the 5% (10%) level

if they are located outside the 95% (90%) confidence

interval based on the distribution of 10 000 synthetic

trends. Figure 15 reveals that all 12 SOM pattern fre-

quency trends are not statistically significant at the 5%

level, and only the trend for SOM pattern 1 is statisti-

cally significant at the 10% level. Because a first-order

Markov chain is memoryless, these results suggest that

the observed trends in wintertime SH teleconnections

may have arisen from processes that are internal to the

atmosphere, although a role for tropical SSTs cannot be

ruled out.

4. Summary and conclusions

In this study we use the method of SOMs to charac-

terize the continuum of wintertime teleconnections in

the extratropical SH. We find that 12 SOM patterns

describe a variety of teleconnections that project onto

the SAM while also exhibiting PSA-like wave trains in

the midtropospheric height field. Therefore, the con-

tinuum of teleconnection patterns present in the daily

height fields generally exhibit properties that are a mix

between the SAM and PSA.

All 12 patterns have intrinsic time scales of about 5–

10 days, indicating that the patterns grow and decay on

short, intraseasonal time scales. However, many pat-

terns also exhibit significantly enhanced or suppressed

frequencies of occurrence over longer intraseasonal

time scales of ;(20–30) days in relation to the MJO

and possibly the recently identified baroclinic annular

mode (Thompson and Barnes 2014; Thompson and

Woodworth 2014). In addition, two patterns respond

strongly to the phase of ENSO on interannual time

scales. Recently, Johnson et al. (2014) demonstrated

that a simple statistical model based on the combined

influence of the MJO and ENSO can yield skillful win-

tertime temperature forecasts over North America for

lead times of up to four weeks. The results presented

here suggest that similar potential may exist in the SH,

and the BAMmay offer another source of predictability

not present in the Northern Hemisphere.

Longer-term trends in the SH climate respond to a

variety of factors. In austral summer, ozone depletion

has played a significant role in tropospheric circulation

trends, likely contributing to a strong positive trend in

the SAM (Arblaster andMeehl 2006; Polvani et al. 2011;

Lee and Feldstein 2013). Tropical SST exerts significant

influences on SH climate trends, mainly through

FIG. 14. Linear trends of JJA (a) GPCP tropical precipitation [mmday21 (30 yr)21] and

(b) NCEP–NCAR extratropical SH 500-hPa geopotential height [m (30 yr)21] for the 1979–

2012 period.
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modifying patterns of tropical deep convection that force

atmospheric teleconnection patterns (Ding et al. 2011;

Schneider et al. 2012; Ding and Steig 2013; Li et al. 2014;

Ding et al. 2015). In the Pacific, such a tropical linkage

shows strong seasonality with the maximum amplitude

of the South Pacific circulation anomaly in austral spring

(Schneider et al. 2012) when the SHRossby wave source

is strongest (Jin and Kirtman 2009). Although previous

studies suggest the importance of tropical low-frequency

SST variability in forcing the SH climate trends in austral

winter (Ding et al. 2011; Li et al. 2014), the tropical Pa-

cific influence may be more robust in austral fall than in

winter (Ding and Steig 2013). The results presented here

support such a conclusion, as tropical forcing does not

appear to play a dominant role in the frequency trends of

the SOM patterns with the strongest trends. Moreover,

the statistical tests we performed suggest that the

observed atmospheric circulation trends in JJA are

consistent with those that may arise from internal at-

mospheric variability alone. These results point out the

potential importance of atmospheric ‘‘climate noise’’ in

generating trends over the period from 1979 to 2012 in

the dynamically active winter season, which then high-

lights the challenge of detecting external sources of at-

mospheric circulation trends over the course of a few

decades (Deser et al. 2012).

The 12 SOM patterns that grow and decay over the

course of less than 10 days also have a significant influ-

ence on the SIC fields on intraseasonal time scales, al-

though the growth and decay of the SIC anomalies are

of a somewhat longer time scale of ;(2–4) weeks. The

resulting SIC anomaly patterns are consistent with the

expected dynamic and thermodynamic influences of the

atmospheric circulation, as they generally form in spatial

quadrature with the atmospheric circulation. This analy-

sis, however, does not address the long-term positive

trend of sea ice that has countered climate model pro-

jections (Turner et al. 2013), although the magnitude of

this positive trend is uncertain due to inhomogeneities in

the satellite-derived data (Eisenman et al. 2014). The

interdecadal sea ice trend likely involves interactions and

feedbacks among the atmospheric circulation, ice sheets,

and ocean, but such analysis is reserved for future studies.

The continuum perspective and methodology pre-

sented here contrast the conventional teleconnection

studies that identify a few unique patterns through EOF

analysis. Although the EOF-based approach has ad-

vantages for quite a few problems, some potential ad-

vantages of the SOM-based approach are evident in this

study. The 12-pattern SOM identifies a diverse set of

teleconnection patterns that exhibit contrasting behav-

ior. Some patterns are strongly excited by the MJO (i.e.,

patterns 1, 7, and 11), whereas others (i.e., patterns 2 and

6) exhibit evidence of quasi-oscillatory behavior un-

related to the MJO. Still others (i.e., patterns 5 and 12)

are strongly excited by ENSO. SOM analysis provides a

natural way of linking teleconnection patterns with short,

intraseasonal time scales to climate variability on longer

interannual and interdecadal time scales. The richness of

this diversity is readily apparent by the approach taken

here but likely would not emerge as clearly without a

continuum perspective of SH teleconnection patterns.
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